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Abstract—Emotion recognition and touch gesture decoding are
crucial for advancing human-robot interaction (HRI), especially
in social environments where emotional cues and tactile percep-
tion play important roles. However, many humanoid robots, such
as Pepper, Nao, and Furhat, lack full-body tactile skin, limiting
their ability to engage in touch-based emotional and gesture in-
teractions. In addition, vision-based emotion recognition methods
usually face strict GDPR compliance challenges due to the need to
collect personal facial data. To address these limitations and avoid
privacy issues, this paper studies the potential of using the sounds
produced by touching during HRI to recognise tactile gestures
and classify emotions along the arousal and valence dimensions.
Using a dataset of tactile gestures and emotional interactions
from 28 participants with the humanoid robot Pepper, we design
an audio-only lightweight touch gesture and emotion recognition
model with only 0.24M parameters, 0.94MB model size, and 0.7G
FLOPs. Experimental results show that the proposed sound-
based touch gesture and emotion recognition model effectively
recognises the arousal and valence states of different emotions,
as well as various tactile gestures, when the input audio length
varies. The proposed model is low-latency and achieves similar
results as well-known pretrained audio neural networks (PANNs),
but with much smaller FLOPs, parameters, and model size.

Index Terms—Affective computing, emotion classification,
touch gestures, humanoid robots, multi-temporal resolution CNN.

I. INTRODUCTION

Robots’ perception of tactile gestures and emotions is inte-
gral to the development of advanced human-robot interaction
(HRI), especially in social environments, where understanding
and responding to emotional cues is critical for meaningful
interactions [1]–[3]. Moreover, real-time emotion states and
touch gesture recognition can significantly improve the natu-
ralness and effectiveness of HRI [4] [5].

Previous work [6] has attempted to decode touch gestures
from tactile signals, but a major limitation is that many robots
lack skin that can sense touch throughout the body. Most
research on humanoid robotics values touch less than vision or
audio signals. Robots like Pepper [7], NAO [8], and Furhat [9]
do not have extensive tactile sensors covering the entire body
[10]. This limitation hinders the development of HRI systems
that decode gestures and emotions based on tactile perception.
To this end, tactile sensors embedded in the surface of robots
are used to decode touch gestures based on pressure patterns,
thus providing a direct tactile-based interaction method [11].
However, tactile sensors [12] can be intrusive and are often
limited by the need for different body contacts.

In addition to tactile-based gesture recognition, most gesture
decoding studies adopt vision-based methods, which use depth

cameras [13] or optical sensors [14] to capture human gestures
and emotions. These vision-based models perform well in
controlled environments. However, they often face significant
challenges in dynamic real-world environments [15], e.g.,
occlusion of certain parts of the face/body or changes in
lighting conditions can seriously affect the effectiveness of the
vision-based models [16]. Moreover, the vision-based models
usually require relatively high computational resources, and
collection of training data. However, it is difficult to avoid
issues related to privacy and general data protection regulation
(GDPR) during data collection. These limitations restrict the
scalability and practicality of vision-based methods.

To recognize gestures and emotions, researchers have also
explored auditory signals and demonstrated the feasibility of
sensing touch gestures on the surface of mobile devices based
on acoustic signals [17]. Auditory stimuli are viewed to be
potent triggers of affective responses, and specific sounds,
e.g., tapping sounds, can affect people’s emotional states and
behaviours [18]. Moreover, speech-based emotion recognitions
have been successfully applied to adjust the behaviour of social
and educational robots to adapt to current social emotions.
Furthermore, the recognition of emotions such as happiness,
sadness, and anger has been widely carried out using features
such as the rhythm, pitch, and intensity of speech [19]–[21].

Emotions are typically analysed along two independent
dimensions (arousal and valence), like in Russell’s model
[22] [23], and neuroimaging studies [24] [25] support these
two-dimensional representations. Hence, the arousal-valence
dimensional model (AVDM) is more commonly used for
sound-related affective computing, e.g., soundscape studies
[26] [27], than the discrete emotion model for single discrete
entities [28] [29]. Hence, this paper uses AVDM to analyse
touch-related emotions.

This paper makes the first attempt to recognise touch ges-
tures and emotions based on sounds produced during HRI. Al-
though previous studies have shown the feasibility of sensing
touch gestures based on acoustic signals, they did not further
study the decoding of different gestures from participants.
Whereas most of the previous auditory-based human emotion
recognition related to robots is based on speech signals, this
paper utilises the non-speech sounds produced during HRI.

II. BACKGROUND

Pepper is an interactive robot developed by SoftBank
Robotics [7], as shown in Fig. 1; more technical specifications,



Fig. 1: The robot Pepper’s physical information1.

please see here1. In the data collection experiment, participants
are asked to express 6 gestures (hold, pat, poke, tickle, tap,
rub) and 10 emotions by touching Pepper’s left forearm with
spontaneous movements. The sounds produced by these touch
movements are recorded by a microphone (the black device
in Fig. 2) to form the sound dataset in this paper.

According to the Circumplex Model [23], the distribution
of the 10 emotions involved in arousal-valence dimensions
is shown in Fig. 3. Happiness and surprise occupy the high
arousal, positive valence quadrant (Q1); anger, fear and dis-
gust are located in the high arousal, negative valence quadrant
(Q2); sadness and confusion are located in the low arousal,
negative valence quadrant (Q3); comfort and calming belong
to the low arousal, positive valence quadrant (Q4); the neutral
emotion, attention, is located at the origin (Q0).

Fig. 2: The participant interacts with the robot Pepper.

III. PROPOSED METHOD

Our ultimate goal is to develop a sound-based model that
can be embedded into a robot to perceive touch gestures and
emotions. To this end, this section first analyzes the limited
availability of computing resources in the robot brain system
and then designs a lightweight model tailored for the robot.

A. Robot’s brain system computing resources
Pepper’s Brain system consists of an Intel ATOM® E3845

processor and 4 GB of DDR3 RAM. The documentation2

provided by Intel shows that E3845 processor’s Floating Point
of Operations (FLOPs) is 11.46G per second. To deploy a
model in Pepper’s brain system, the model’s FLOPs should
not be greater than 11.46G; otherwise, it cannot be run on
Pepper. Considering this restriction, the model to be deployed
should meet the following requirements: 1) lightweight with
few parameters; 2) small FLOPs and low processing latency;
3) able to process varying-length audio clips. Next, we will
use these three points as guidelines to design the model.

1https://support.aldebaran.com/support/solutions/articles/
80000958735-pepper-technical-specifications

2https://www.intel.com/content/dam/support/us/en/documents/processors/
APP-for-Intel-Atom-Processors.pdf

Fig. 3: Circumplex Model [23] with 10 emotions in this paper.

B. The proposed lightweight model: MTRCNN

Sounds caused by various touch gestures and emotions
may have different durations, e.g., the sound of an angry
hit and the rust of a calm touch. Thus, we propose a multi-
temporal resolution convolutional neural network (MTRCNN)
in Fig. 4. The convolution (Conv) part of MTRCNN consists
of 3 branches with Conv kernel sizes of (3, 3), (5, 5), and (7,
7), respectively. Different kernel sizes extract representations
with different resolutions. To obtain a larger Conv receptive
field size (RFS) with fewer parameters, the dilated Conv [30]
is used. Moreover, to avoid the gridding artifacts [31] of the
dilated Conv, hybrid dilated Conv scheme [30] is adopted, so
the number of filters and the dilation rate of 3 Conv layers
of each branch are [16, 32, 64] and [(1,1), (2,1), (3,1)]. The
dilation rate only changes along the time axis.

Fig. 4: The proposed lightweight multi-temporal resolution
convolutional neural network (MTRCNN).

Taking the branch with the largest kernel (7, 7) as an ex-
ample, according to the convolution RFS calculation formula,

Ri = (Ri−1 − 1)× stride+ k (1)
where Ri is the i-th Conv layer’s RFS relative to the input
feature map, R0 = 1, the Conv step size stride defaults to 1,
and k is the Conv kernel size. If there is no pooling operation,
according to Eq. (1), the 1st Conv layer’s RFS on the time
axis is R1 = 7. For dilated Conv, the formula for the RFS is

Ri = (Ri−1 − 1)× stride+ k + (k − 1)(r − 1) (2)



where r is the dilation rate. For the 2nd Conv layer with
dilation rate (2, 1), on the time axis, R2 is 20. For the 3rd
Conv layer, R3 is 38 on the time axis. That is, without pooling,
MTRCNN requires that the length of the input be at least 38
frames. With a frame hop of 10ms, the corresponding length of
the input clip is at least 0.38s. Identifying emotions or gestures
within 0.38 seconds is challenging, even for humans. More-
over, if pooling is not used, the number of model parameters
and the computation load will increase. After comprehensive
trade-offs, we add pooling operations to these Conv layers,
resulting in a minimum input audio length of 1.10s.

After the three Conv layers, the representations are fed into
the following 64D embedding layer to learn embeddings with
different resolutions. Then, the 3 branches’ embeddings are
concatenated and fed into the 192-dimensional (64 ∗ 3) multi-
resolution embedding fusion layer to fuse information from
different temporal resolutions. The fused embeddings are fed
to the last classification layers. For the resulting MTRCNN
model, the FLOPs is 0.708G, the number of parameters is
0.24M , the model size is 0.94MB, and it can process input
audio clips of any length of at least 1.10s. These fit well with
the design guidelines in Section (Sec.) III-A.

The tasks in subsequent experiments are all single-label
multi-classification tasks, so the activation functions for the
arousal (Aro), valence (Val), Aro-Val, and gesture classi-
fication layers are all Softmax, the loss function is cross
entropy [32]. For more details, please see the homepage
(https://github.com/Yuanbo2020/MTRCNN).

IV. EXPERIMENTS AND RESULTS

A. Dataset, experiments setup, and metrics

We conducted data collection experiments to record touch
sounds for gesture and touch sounds for emotion [33]. As
stated in Sec. II, participants first expressed gestures 10 emo-
tions independently by touching Pepper’s arm, and then ex-
pressed 6 touch gestures; the sounds generated by movements
during touch are recorded as the dataset. Participants complete
3 rounds of interaction, each lasting 10s. Finally, there are 84
(28 × 3) 10s audio clips for each gesture and emotion. For
touch gesture classification, the number of samples in training,
validation, and test sets is 366, 42, and 84, respectively. For
emotion classification, the number of samples in training,
validation, and test sets is 660, 80, and 100, respectively.

The Mel-filter with 64 banks is used as the acoustic feature,
with a Hamming window of 32ms and an overlap of 10ms
[34]. Dropout and normalization are used to prevent model
overfitting [35]. A batch size of 32 and Adam optimizer [36]
with a learning rate of 1e-3 are used to minimize loss. Models
are trained on a GPU card Tesla T4 for 100 epochs, and 10
times without a fixed seed to obtain the mean result of 10 runs.
Accuracy (Acc) is used to evaluate the classification results.
Dataset, code, and models are available on the homepage.

B. Results and analysis

This part analyzes the performance of the proposed MTR-
CNN by the following research question (RQ).

RQ1: Is it feasible to recognise touch gestures and distinguish
emotions’ arousal and valence based on audio alone?

Table I shows the results of MTRCNN for classifying 6
gestures, as well as arousal and valence of emotions. Arousal
is usually classified as low, neutral, and high. Valence is
classified as negative, neutral, and positive. The AVDM of
arousal-valence joint classification has four quadrants and an
origin, so the arousal-valence [23] joint classification has five
categories: Q1, Q2, Q3, Q4, and Q0, as shown in Fig. 3.

TABLE I: Test set classification results of the model with 10s
audio clip input; models are repeated 10 times.

Arousal (Aro) Valence (Val) Aro-Val Gesture
Acc. 69.97 ± 4.40 62.90 ± 4.78 53.93 ± 3.41 82.14 ± 3.46

In Table I, MTRCNN performs better on touch gesture
classification than emotion classification. This may be because
gestures usually contain clear and consistent patterns, such
as regular sounds when tapping and snapping sounds when
patting, so the model can capture sounds produced by specific
movements and rhythms to identify touch gestures effectively.
However, due to the variety of ways in which different
participants express emotions and different perceptions of the
same type of emotions [37], e.g., a calm emotion expressed
by some may appear sad to others. This makes Aro-Val-based
emotion classification, especially relying on sounds produced
when touching, challenging.

In Table I, MTRCNN has a higher classification accuracy
on the arousal dimension than the valence dimension. Arousal
denotes the intensity of emotion, which is usually conveyed
via direct physical cues, e.g., pressure, frequency, and speed,
which allows MTRCNN to grab these cues in sounds to effi-
ciently identify the class of arousal. Valence reflects emotion’s
positive or negative nature, which is more subtle and context-
dependent [38], making it challenging to distinguish it based
solely on touch actions and the sounds caused by it.
RQ2: What is the shortest effective audio length required for
touch-sound-based gesture and emotion recognition models?

Table I shows the performance of MTRCNN trained with
full 10s audio clips. Here, we further explore the minimum
audio length required for MTRCNN to effectively recognise
gestures and emotion states. The input audio length can be
regarded as a hyperparameter of the model. To avoid informa-
tion leakage, Table II shows the results of this hyperparameter
on the validation set. As mentioned in Sec. III-B, the proposed
MTRCNN can handle audio clips with varying lengths with a
minimum length of 1.10s, so the input audio length range in
Table II is [1.10, 10].

Table II shows that the accuracy of touch gesture classifi-
cation increases with the input audio length and peaks at 6s.
The gesture classification results closest to the 6s result are at
5s and 7s, respectively, so we conduct statistical analysis on
these similar results. The Shapiro-Wilk test [39] shows that the
data follow a normal distribution. Then, the paired t-test [40]
is used, and the statistics show that the gesture classification
results based on 6s clips are significantly better than those of 5s



TABLE II: Accuracy of Aro-Val joint classification and gesture classification with varying input lengths on the validation set

Input length 1.10 s 2.00 s 3.00 s 4.00 s 5.00 s 6.00 s 7.00 s 8.00 s 9.00 s 10.00 s
Aro-Val 41.17±2.61 50.77±2.81 51.04±2.12 52.63±4.86 53.29±4.26 54.46±3.71 58.54±3.74 56.58±5.62 53.83±3.46 51.79±3.84
Gesture 68.81±3.06 84.99±2.76 85.48±2.37 85.71±3.17 88.47±2.46 90.24±3.80 86.19±3.33 83.81±3.69 83.57±6.39 79.31±6.55

(t = 3.19, p < 0.05) and 7s (t = 3.22, p < 0.05). In addition,
for the Aro-Val joint classification of emotions, the results
closest to 7s are the results of 6s and 8s, respectively. Paired
t-test for Aro-Val joint classification shows that the results
based on the 7s clip are significantly better than those of 6s
(t = 11.31, p < 0.05) and 8s (t = 2.58, p < 0.05).

The above analyses show that MTRCNN effectively recog-
nises different touch gestures within 6s and decodes emotions
within 7s. Hence, input lengths of 6s and 7s will be used as
default settings of MTRCNN for touch gesture classification
and Aro-Val classification of emotions, respectively.
RQ3: What are the most challenging touch gestures and the
emotions’ dimensions to distinguish based on sounds?

In Fig. 5 (a), MTRCNN performs better in identifying high
arousal than low and neutral states. This implies that high
arousal associated with touch sounds is easier to distinguish.
Fig. 5 (c) implies that touch-based emotions in positive valence
are more distinguishable than those in negative valence. In the
Aro-Val space in Fig. 5 (b), MTRCNN can better distinguish
emotions in Q2 (high arousal, negative valence) and Q4 (low
arousal, positive valence) than those in Q1 and Q3. This is in-
teresting because it suggests that these combinations of arousal
and valence may be more consistently expressed by specific
touch gestures conveyed by participants. The high and low
arousal in Fig. 5 (a), as well as positive and negative valence
in Fig. 5 (c), are rarely misclassified as neutral, implying
that non-neutral emotions are less likely to be confused with
neutral emotion due to their different tactile cues.

For gesture recognition, as shown in Fig. 5 (d), MTRCNN
accurately identifies gestures such as pat, tap, and hold. These
gestures usually have unique tactile profiles that are easy
to identify. Like, pat may involve an easily recognizable
repetitive rhythmic pattern [41], while tap and hold are simple,
discrete movements with clear tactile features. In addition,
rub is only misclassified as hold. This may be due to the
subtle differences and overlapping tactile sensations between
the two gestures, making their sounds similar, especially when
the strength or speed of rub is not obvious.
RQ4: How does the proposed model perform compared to
other typical sound-related models?

Table III compares models’ performance on the same server
(CPU: AMD EPYC 7352, GPU: Tesla T4 16GB). CNN-
Transformer consists of 3 convolutional layers with (3 × 3)
kernels, a Transformer encoder, and the final classification
layers. YAMNet and MobileNetV2 [42] are classic CNN-based
networks. PANNs [34] have shown excellent performance on
AudioSet [43] and audio pattern-related tasks. Therefore, #4
and #5 explore the performance of PANNs with and without
pretrained weights on large-scale AudioSet [43], respectively.
The #5 with pretrained weights (PreW) significantly out-

Fig. 5: Normalized confusion matrix on the test set.

performs #4, indicating that the knowledge from the 5800-
hour AudioSet effectively improves the model performance.
However, #6, which has the smallest number of parameters and
model size, achieves the best results in gesture classification,
and is better than PANNs with PreW in #5. For Aro-Val
classification, although #5, which uses PreW from AudioSet, is
slightly better than the proposed #6 on the mean values, there
is no statistically significant difference (t = −0.70, p > 0.05).

TABLE III: Comparison of different models on the test set.

# Model Param. Size FLOPs Inference Accuracy
(M) (MB) (G) time (s) Aro-Val Gesture

1 CNN-Trans. 1.58 6.02 0.266 0.006 28.87±4.47 60.60±6.51
2 YAMNet 3.21 12.30 0.728 0.008 29.03±2.77 61.19±5.78
3 MobileNetV2 2.23 8.74 0.351 0.007 45.63±6.22 71.90±5.56
4 PANNs 79.68 304.1 11.96 0.012 49.20±3.02 76.43±4.48
5 PANNs PreW 79.68 304.1 11.96 0.012 55.83±4.84 83.33±3.12
6 MTRCNN 0.24 0.94 0.708 0.007 54.73±3.29 84.17±3.89

V. CONCLUSION
This paper explores the feasibility of identifying touch

gestures and the emotions leading to them based on sounds
produced by movements during touch, which fills the gap
in HRI that lacks touch-related sounds to decode touch ges-
tures and emotions. The proposed sound-based touch gesture
and emotion recognition model can effectively recognize the
arousal and valence states of different emotions, as well as
various tactile gestures, when the input audio length varies
from at least about 2 seconds to the optimal 6 to 7 seconds.
Moreover, its lightweight, low-parameter, and low-latency pro-
cessing characteristics make it ideal for real-time applications
on robots such as Pepper. Future work will package the
proposed model into an application and deploy it on Pepper.
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